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Small-Signal and Noise Model Extraction

Technique for Heterojunction Bipolar

Transistor at Microwave Frequencies
J. P. Roux, L. Escotte, R. Plana, J. Graffeuil, Senior Member, IEEE, S. L. Delage, Member, IEEE, and H. Blanck

Abstract— The increasing use of Heterjunction Bipolar Tran-

sistors (HBT’s) in microwave analog circuits requires a valid

description of these devices by means of an equivalent circuit

includhg noise sources in an extended bias and frequency range.

This paper describes a technique to extract the elements of

the equivalent circuit from simultaneous noise and S-parameter
measurements. Additionally, the conventional high frequency

bipolar junction transistor (BJT) noise model is shown to work

well with HBT’s. Recent results obtained from GaInP/GaAs
HBT’s are reported.

I. INTRODUCTION

A PHYSICALLY-BASED, small-signal, equivalent circuit

of microwave bipolar transistor, valid for multiple bias

is very useful for drawing up new circuit design guidelines

for microwave linear integrated circuits. This model is ob-

tained by minimizing the difference between the measured

and the calculated S-parameters. This is accomplished by an

optimization procedure which changes the equivalent circuit

parameter (ECP’s) values to reach the minimum of a given

error function. Usually the problem lies in that there are

several solutions providing a good fit and then ECP values

depend on the initial values used for starting the optimization

[1]. It is therefore possible to accurately tit the measured S-

parameters with a nonphysical set of ECP values and still

obtain inaccurate results for several applications like those

requiring noise parameter knowledge.

To overcome these limitations, different attractive methods

have recently been proposed. Additional measurements of

test structures located on the same wafer can be performed

to determine the parasitic inductances and capacitances [2].

Cutoff mode measurements are also used to reduce the num-

ber of unknowns in the optimization procedure [3]. These

measurements can be coupled with an analytical method

for extracting model parameters [4]. Direct analysis of S-

parameter data combined with an appropriate optimization

procedure also allows ECP extraction [5].

As previously described for field effect transistors [6], an

alternative technique, based on an optimization procedure

using an error function involving both small-signal and noise

parameters, is proposed for HBT’s (Section III). In addition
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Fig. 1. Parallel representation of a noisy two-port.

it is shown that the standard high frequency BJT noise model

is well-suited for HBT’s. Finally recent microwave noise data

obtained from GaInP/GaAs devices are discussed (Section IV).

In the following section, the small-signal and noise model used

in this study is discussed.

II. SMALL-SIGNAL AND NOISE MODEL

The noise behavior of a linear noisy two-port can be ac-

curately described by two noise generators and their complex

correlation [7]. The parallel representation is given in IFig. 1

where the noisy two-port is replaced by a noiseless two-port

defined by its admittance matrix, combined with two correlated

noise current sources Z1 and iz set at the input and output of the

network, respectively. In the case of an intrinsic heterojunction

bipolar transistor in common-emitter mode and according to

Van der Ziel’s analysis [8], the noise sources il and 22 in the

high frequency range, which is well above the excess noise

comer frequency (typically 1 MHz or less in HBT’s [9]), result

from the shot noise generated at the base-emitter and base-

collector junctions. These noise sources are characterized by

their mean quadratic value in a bandwidth A f centered on the

frequency f, and can be given ‘by the following expressions:

i? = 2qIbAf (1)

~ = 2qICAf (2)

where q is the electronic charge and k Boltzmann’s constant.

lb and lC are the base and collector currents, respectively.

The commonly used cross-correlation [10] between il and iz

obtained by Van Vliet’s theory [1 I ] is given by the following

equation:

ili~ = 2kT(Y12, + Y2*li)Af – 2qI.Af (3)

where Y* is the complex conjugate of Y and T the room

temperature (294 K). YIz and Yzl~ are the reverse and forward

transfer admittance of the intrinsic transistor, respectively.

According to (3) the noise behavior strongly depends on the
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Fig. 2. Eqmvatentcircuh topology for the intrinsic HBT,

values of the Y-parameters of the intrinsic device. An accurate

s,mall-signal equivalent circuit is thus a prerequisite for an

accurate analysis of the transistor noise properties.

The common emitter H-model equivalent circuit used to

characterize the intrinsic behavior of HBT is presented in

Fig. 2. The bias-dependent intrinsic elements are the dynamic

diode conductance gn, the base-emitter capacitance Cn includ-

ing the diffusion capacitance and the depletion capacitance,

the base-collector capacitance Cb., the transconductance gmo

and the time delay between base and collector T. The output

conductance has been disregarded in this work since its effect

on power gain is only noticeable below 1 GHz [12]. The

admittance parameters of the intrinsic transistor are obtained

from the theory of linear networks and are expressed as

follows:

Y~~t = gn + j(cn + c~c)w (4)

ylz~= ‘j(&(i (5)

Y22Z= jc&b) (7]

where w is the anguktr frequency.

But the real HBT cannot be fully described by the simple

equivalent circuit of Fig. 2. Parasitic resistances (including

contact and access resistances to the intrinsic transistor) must

be added and are supposed to generate thermal noise according

tc) the well-known Nyquist relation:

e; = 4kTRAf (8)

where R is the resistance at ambient temperature (T = 294 K).

The complete HBT small-signal and noise equivalent circuit

is shown in Fig. 3 including parasitic associated with the con-

tact pads. C@~ represents the extrinsic collector capacitance.

The extrinsic capacitance between base and emitter was found

tcl be negligible and can be ignored in the equivalent circuit

tc,pology. It can be pointed out that the base resistance is

splitted into two parts as generally shown [13]. This equivalent

circuit topology provides satisfactory results in the frequency

range of interest (up to 20 GHz).

Unlike field effect transistors where diffusion noise is pre-

eminent, no additional noise coefficient is needed in (1 )–(3) to

obtain the exact values of the noise sources. This provides the

theoretical background for the proposed extraction technique

described in the next section.
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Fig. 3. Complete HBT small-signal and noise equivalent circuit.

III. EXTRACTION PROCEDURE

Scattering and noise measurements are performed on-wafer

using an automatic test set coupled with a wafer probe station.

The noise parameters derived from the multiple impedance

technique [14] are the minimum noise figure I’~in, the equiv-

alent noise resistance R. and the optimum noise source

admittance YoPt = GoPt + jBoPt which provides the minimum
noise figure. The test set and the method used to extract

those parameters are described elsewhere [15]. Measurements

are made from 4 to 20 GHz for different base currents 16

ranging from 90 LA to 1200 VA at V& = 2 V. The extrac-

tion of the ECP’s is done using Hewlett-Packard simulation

software MDS.

Our main contribution lies in the introduction of a new error

function involivng both small-signal and noise parameters

[6] allowing accurate ECP values to be derived from the

optimization procedure. Contrary to cutoff [3] or cold device

measurements, noise parameter measurements are performed

under normal operating bias conditions and therefore provide

the actual equivalent circuit elements at a given bias point.

The error function is a normalized least-square error func-

tion given by:

‘= E qData;:t:ode1”)2
,ARAi&TERS‘“q

DataY- and Modely refer to the measured and calculated

characteristics of the device and correspond to the real part

and the imaginary part of admittance parameters obtained from

scattering parameters whereas DataN and ModelN refer to the

measured and computed noise parameters. The optimization

method is based on the gradient method and the procedure

is ended when the relative deviation between measured and

calculated data is less than 1%. The initial value of the

collector resistance R. is obtained from DC measurement [16].

The value of the emitter resistance R., is obtained from low

frequency measurement [17] and left unchanged during the

optimization process.
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Fig.4. Measured and computed S-parameters of a GaInP/GaAs HBT at

lC – 2.45 mA, Ib = 250 LA and V~~ = 2 V from 4 GHz to 20 GHz.
<’. . . . “: measured data, “- “: computed data,

The optimization procedure was performed for 7 different

base currents and all parameters (except R..) have been

extracted for each value of the base current. Parasitic elements

were found to be weakly bias-dependent. Their mean values

were then calculated and left unchanged in a final multiple bias

optimization procedure in order to adjust the intrinsic ECP’s.

The results obtained are discussed in the next section.

IV. RESULTS

The proposed procedure was used to derive a small-signal

and noise equivalent circuit of GaInP/GaAs HBT’s. HBT’s

were processed by Thomson-CSF/LCR using self-aligned

technology [18], [19]. Epitaxial structures were grown by

Low Pressure Metal Organic Chemical Vapour Deposition

(LP-MOCVD) and base layers were carbon-doped to insure

low P dopant diffusion into the emitter. Devices featuring a

1 ~m x 20 pm emitter show an ~T of 45 GHz and ,fMAX

of 55 GHz [9].

In Fig. 4, we compare the measured and computed S-

parameters of a GaInP/GaAs HBT operating at 1. =

2.45 pA, lb = 250 PA and V& = 2 V. An excellent

agreement over the entire 4–20 GHz frequency range was

observed. The noise parameters and the associated gain

variations versus frequency are also reported in Figs. 5(a)–(c)

for the same bias and a good agreement was observed between

the computed and the measured values. Minimum noise figure

Fmin was found to be constant with frequency with a 3 dB

value. This differs from what had previously been reported

[20]-[22] where Fmin increased with the square of frequency

above the 3 dB cut-off frequency of the intrinsic current gain.

Numerical simulations have shown the noise figure to be

strongly dependent on the extrinsic base-collector capacitance

C@C and time delay T which reduce the noise figure variations

at high frequencies.

The 11.3 dB associated power gain measured at 12 GHz

compares well with those observed in FET’s. The variation of

the equivalent noise resistance R~ versus frequency is reported

in Fig. 5(b). Likewise, the decrease of Rn with frequency is

due to the time delay r and the influence of the extrinsic

capacitance Cpbc in this frequency range.

With respect to the optimum reflection coefficient r.pt

depicted in Fig. 5(c), the following may be stated: the low-
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Fig. 5. Noise parameters versus frequency of a GaInP/GaAs HBT at
Ic = 2.45 mA, Ib = 250 PA and V& = 2 V. (ss) Minimum noise figure
~~;~ and associated gain G. versus frequency. “A” ~~,~ measured. “W’:
G. measured. “- “: computed data. (b) Equivalent noise resistance R~
versus frequency. “A”: measured data. “-”: computed dala. (c) Magnitude

and phase of the optimum reflection coefficient r .Ptversusfrequency. “A”:
lroPhI measured: “~’: lr.ptmeasured. “-”: computed data.

value of 1170DtI (less than 0.3), compared to the field effect

transistors, facilitates the noise parameter measurement pro-

cedure and increases the accuracy of the noise parameter
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Fig. 6. Measured and computed minimum noise figure Fm,n versus base

current Ib at ~ = 18 GHz. “A”: measured data. “’— “: computed data.

extraction technique [15]. Moreover, the low noise matching

condition is more easily obtained. The variations of measured

and calculated Fmin versus base current 1~ are reported in

Fig. 6 at VL = 2 V and f = 18 GHz. The minimum noise
figure decreases when decreasing the base current according to

the shot noise theory and a minimum occurs at 16 = 250 PA.

The slight increase of Fmi. for base currents lower than

250 WA is related to the decrease of the current gain at low

injection level due to surface recombination.

The results indicate that shot noise dominates the noise

behavior of the HBT’s used in this study. Higher values of

current gain /? are then needed to decrease the minimum

noise figure. The agreement between the calculated and the

measured values of FmZn for base current values lower than

750 \~A(lC > 10 mA) is excellent while a slight discrepancy

occurs at high values. This occurs probably, because of the

device self heating. Further investigations are being carried

out to include the junctions temperature of the device in the

small-signal and noise model.

In order to evaluate the weight of the noise parameters in

the error function, Table I lists the results of two different

extraction methods for I= = 2.45 mA, Ib = 250 PA and

V& = 2 V. In the first case, only Y-parameters are optimized

while in the second, both Y- parameters and noise parameters

are considered. Both methods provide an equivalent good fit

of scattering parameters. Nevertheless the noise parameters

calculated for Case I widely differ from the experimental ones,

while an excellent agreement is obtained in Case 2 as shown

in Figs. 3(a)–5(c). Additionally in Case 2 after many trials,

it was found that, in our case, the final values of ECP’s are

insensitive to the starting point values with the suggested new

error function including noise data.

Other GaInP/GaAs HBT’s exhibiting different emitter di-

mensions as well as Si/SiGe HBT’s fabricated at Daimler-

Benz [23] have also been modeled with similar good re-

sults. Although the frequency dependence of noise parameters

in Si/SiGe HBT’s is slightly different from the one ob-

served in the GaInP/GaAs devices previously investigated,

the accuracy of the proposed technique turns out to be very

satisfactory.

TABLE I

ECP VALUES EXTRACTED FROM A CONVENTIONAL PROCEDURE

(USING S-PARAMETERS oiwY) AND FROM THE PROPOSED
TECHNIOUE (USING S-PARAMETERSANO NOISE PARAMETERS)

AT Ic –’2.45 mA, lb = 250 PA AND b;. = 2 V

Optimizationthrough Optimization through

ECP’S Y-parametersonly Y-parametersand

noiseparameters

L, (pW 36.8 25.5

Lb (pII) 36.1 32.1

L, (pII) 23.3 21.7

cp~c (m) 73.2 45.0

CpceO-F) 43.8 33.2

& (S2) 3 3

Rbl (Q) 0.3 0.1

Rbz (Q) 10.8 8.6

& (Q) 2.9 2.9

C= (PF) 0.391 0.407

c~c (m) 37.1 69.9

gn (mf$ 7.47 9.88

gmo(mS) 82.9 88.5

~ (Ps) 0.61 1.79

V. CONCLUSION

We have used a sensitive extraction technique involving

both scattering and noise measured data to derive an accurate

small-signal and noise equivalent circuit of HBT’s. This

technique provides correct parameter values and does not

require additional test structures or special bias measurement.

We have found that two correlated intrinsic noise current

generators provide a satisfactory description of the observed

HBT’s noise behavior as expected from the conventional high

frequency BJT noise model.

Furthermore, the proposed technique can easily be imple-

mented on commercially available CAD software and the

appropriate parasitic elements can be added to the proposed

equivalent circuit to enhance the frequency range validity.

GaInP/GaAs HBT’s have been investigated using this tech-

nique under seyeral bias conditions. A noise figure of about

3 dB with a 5 dB associated gain has been obtained at 20 GHz.

Further technological improvements that could provide higher

values of @ will thus provide a further decrease in minimum

noise figure,
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