

# Small-Signal and Noise Model Extraction Technique for Heterojunction Bipolar Transistor at Microwave Frequencies

J. P. Roux, L. Escotte, R. Plana, J. Graffeuil, *Senior Member, IEEE*, S. L. Delage, *Member, IEEE*, and H. Blanck

**Abstract**—The increasing use of Heterojunction Bipolar Transistors (HBT's) in microwave analog circuits requires a valid description of these devices by means of an equivalent circuit including noise sources in an extended bias and frequency range.

This paper describes a technique to extract the elements of the equivalent circuit from simultaneous noise and *S*-parameter measurements. Additionally, the conventional high frequency bipolar junction transistor (BJT) noise model is shown to work well with HBT's. Recent results obtained from GaInP/GaAs HBT's are reported.

## I. INTRODUCTION

**A** PHYSICALLY-BASED, small-signal, equivalent circuit of microwave bipolar transistor, valid for multiple bias is very useful for drawing up new circuit design guidelines for microwave linear integrated circuits. This model is obtained by minimizing the difference between the measured and the calculated *S*-parameters. This is accomplished by an optimization procedure which changes the equivalent circuit parameter (ECP's) values to reach the minimum of a given error function. Usually the problem lies in that there are several solutions providing a good fit and then ECP values depend on the initial values used for starting the optimization [1]. It is therefore possible to accurately fit the measured *S*-parameters with a nonphysical set of ECP values and still obtain inaccurate results for several applications like those requiring noise parameter knowledge.

To overcome these limitations, different attractive methods have recently been proposed. Additional measurements of test structures located on the same wafer can be performed to determine the parasitic inductances and capacitances [2]. Cutoff mode measurements are also used to reduce the number of unknowns in the optimization procedure [3]. These measurements can be coupled with an analytical method for extracting model parameters [4]. Direct analysis of *S*-parameter data combined with an appropriate optimization procedure also allows ECP extraction [5].

As previously described for field effect transistors [6], an alternative technique, based on an optimization procedure using an error function involving both small-signal and noise parameters, is proposed for HBT's (Section III). In addition

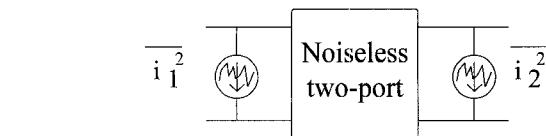



Fig. 1. Parallel representation of a noisy two-port.

it is shown that the standard high frequency BJT noise model is well-suited for HBT's. Finally recent microwave noise data obtained from GaInP/GaAs devices are discussed (Section IV). In the following section, the small-signal and noise model used in this study is discussed.

## II. SMALL-SIGNAL AND NOISE MODEL

The noise behavior of a linear noisy two-port can be accurately described by two noise generators and their complex correlation [7]. The parallel representation is given in Fig. 1 where the noisy two-port is replaced by a noiseless two-port defined by its admittance matrix, combined with two correlated noise current sources  $i_1$  and  $i_2$  set at the input and output of the network, respectively. In the case of an intrinsic heterojunction bipolar transistor in common-emitter mode and according to Van der Ziel's analysis [8], the noise sources  $i_1$  and  $i_2$  in the high frequency range, which is well above the excess noise corner frequency (typically 1 MHz or less in HBT's [9]), result from the shot noise generated at the base-emitter and base-collector junctions. These noise sources are characterized by their mean quadratic value in a bandwidth  $\Delta f$  centered on the frequency  $f$ , and can be given by the following expressions:

$$\overline{i_1^2} = 2qI_b\Delta f \quad (1)$$

$$\overline{i_2^2} = 2qI_c\Delta f \quad (2)$$

where  $q$  is the electronic charge and  $k$  Boltzmann's constant.  $I_b$  and  $I_c$  are the base and collector currents, respectively.

The commonly used cross-correlation [10] between  $i_1$  and  $i_2$  obtained by Van Vliet's theory [11] is given by the following equation:

$$\overline{i_1 i_2^*} = 2kT(Y_{12i} + Y_{21i}^*)\Delta f - 2qI_c\Delta f \quad (3)$$

where  $Y^*$  is the complex conjugate of  $Y$  and  $T$  the room temperature (294 K).  $Y_{12i}$  and  $Y_{21i}$  are the reverse and forward transfer admittance of the intrinsic transistor, respectively. According to (3) the noise behavior strongly depends on the

Manuscript received October 25, 1993; revised April 18, 1994.

J. P. Roux, L. Escotte, R. Plana, and J. Graffeuil are with LAAS-CNRS et Université Paul Sabatier, 31077 Toulouse, France.

S. L. Delage, and H. Blanck are with Thomson CSF/LCR, 91401 Orsay, France.

IEEE Log. Number 9407280.

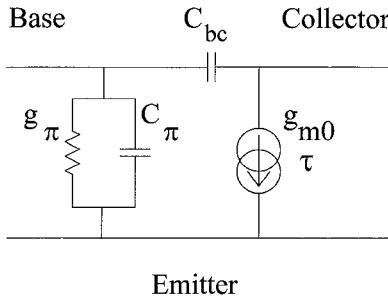



Fig. 2. Equivalent circuit topology for the intrinsic HBT.

values of the  $Y$ -parameters of the intrinsic device. An accurate small-signal equivalent circuit is thus a prerequisite for an accurate analysis of the transistor noise properties.

The common emitter  $\Pi$ -model equivalent circuit used to characterize the intrinsic behavior of HBT is presented in Fig. 2. The bias-dependent intrinsic elements are the dynamic diode conductance  $g_{\Pi}$ , the base-emitter capacitance  $C_{\Pi}$  including the diffusion capacitance and the depletion capacitance, the base-collector capacitance  $C_{bc}$ , the transconductance  $g_{m0}$  and the time delay between base and collector  $\tau$ . The output conductance has been disregarded in this work since its effect on power gain is only noticeable below 1 GHz [12]. The admittance parameters of the intrinsic transistor are obtained from the theory of linear networks and are expressed as follows:

$$Y_{11i} = g_n + j(C_n + C_{bc})\omega \quad (4)$$

$$Y_{12i} = -jC_{bc}\omega \quad (5)$$

$$Y_{21i} = g_{m0} \cos(\omega\tau) - j[g_{m0} \sin(\omega\tau) + C_{bc}\omega] \quad (6)$$

$$Y_{22i} = jC_{bc}\omega \quad (7)$$

where  $\omega$  is the angular frequency.

But the real HBT cannot be fully described by the simple equivalent circuit of Fig. 2. Parasitic resistances (including contact and access resistances to the intrinsic transistor) must be added and are supposed to generate thermal noise according to the well-known Nyquist relation:

$$\overline{e_R^2} = 4kT R \Delta f \quad (8)$$

where  $R$  is the resistance at ambient temperature ( $T = 294$  K).

The complete HBT small-signal and noise equivalent circuit is shown in Fig. 3 including parasitics associated with the contact pads.  $C_{pbc}$  represents the extrinsic collector capacitance. The extrinsic capacitance between base and emitter was found to be negligible and can be ignored in the equivalent circuit topology. It can be pointed out that the base resistance is splitted into two parts as generally shown [13]. This equivalent circuit topology provides satisfactory results in the frequency range of interest (up to 20 GHz).

Unlike field effect transistors where diffusion noise is pre-eminent, no additional noise coefficient is needed in (1)–(3) to obtain the exact values of the noise sources. This provides the theoretical background for the proposed extraction technique described in the next section.

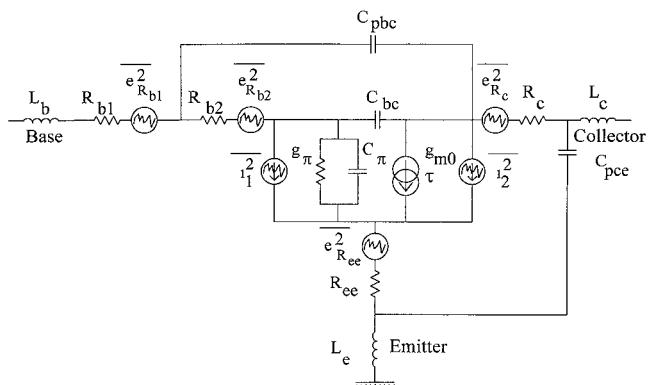



Fig. 3. Complete HBT small-signal and noise equivalent circuit.

### III. EXTRACTION PROCEDURE

Scattering and noise measurements are performed on-wafer using an automatic test set coupled with a wafer probe station. The noise parameters derived from the multiple impedance technique [14] are the minimum noise figure  $F_{\min}$ , the equivalent noise resistance  $R_n$  and the optimum noise source admittance  $Y_{opt} = G_{opt} + jB_{opt}$  which provides the minimum noise figure. The test set and the method used to extract those parameters are described elsewhere [15]. Measurements are made from 4 to 20 GHz for different base currents  $I_b$  ranging from  $90 \mu A$  to  $1200 \mu A$  at  $V_{ce} = 2$  V. The extraction of the ECP's is done using Hewlett-Packard simulation software MDS.

Our main contribution lies in the introduction of a new error function involving both small-signal and noise parameters [6] allowing accurate ECP values to be derived from the optimization procedure. Contrary to cutoff [3] or cold device measurements, noise parameter measurements are performed under normal operating bias conditions and therefore provide the actual equivalent circuit elements at a given bias point.

The error function is a normalized least-square error function given by:

$$\varepsilon = \sum_{\text{PARAMETERS}} \sum_{\text{freq}} \left( \frac{\text{Data}_Y - \text{Model}_Y}{\text{Data}_Y} \right)^2 + \sum_{\text{NOISE PARAMETERS}} \sum_{\text{freq}} \left( \frac{\text{Data}_N - \text{Model}_N}{\text{Data}_N} \right)^2 \quad (9)$$

$\text{Data}_Y$  and  $\text{Model}_Y$  refer to the measured and calculated characteristics of the device and correspond to the real part and the imaginary part of admittance parameters obtained from scattering parameters whereas  $\text{Data}_N$  and  $\text{Model}_N$  refer to the measured and computed noise parameters. The optimization method is based on the gradient method and the procedure is ended when the relative deviation between measured and calculated data is less than 1%. The initial value of the collector resistance  $R_c$  is obtained from DC measurement [16]. The value of the emitter resistance  $R_{ee}$  is obtained from low frequency measurement [17] and left unchanged during the optimization process.

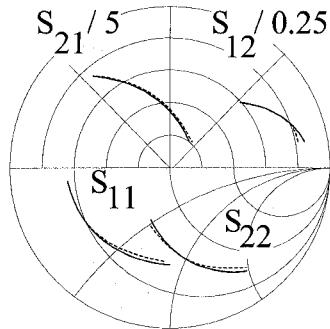



Fig. 4. Measured and computed S-parameters of a GaInP/GaAs HBT at  $I_c = 2.45$  mA,  $I_b = 250$   $\mu$ A and  $V_{ce} = 2$  V from 4 GHz to 20 GHz. “---”: measured data, “—”: computed data.

The optimization procedure was performed for 7 different base currents and all parameters (except  $R_{ee}$ ) have been extracted for each value of the base current. Parasitic elements were found to be weakly bias-dependent. Their mean values were then calculated and left unchanged in a final multiple bias optimization procedure in order to adjust the intrinsic ECP's. The results obtained are discussed in the next section.

#### IV. RESULTS

The proposed procedure was used to derive a small-signal and noise equivalent circuit of GaInP/GaAs HBT's. HBT's were processed by Thomson-CSF/LCR using self-aligned technology [18], [19]. Epitaxial structures were grown by Low Pressure Metal Organic Chemical Vapour Deposition (LP-MOCVD) and base layers were carbon-doped to insure low  $P$  dopant diffusion into the emitter. Devices featuring a  $1 \mu\text{m} \times 20 \mu\text{m}$  emitter show an  $f_T$  of 45 GHz and  $f_{MAX}$  of 55 GHz [9].

In Fig. 4, we compare the measured and computed  $S$ -parameters of a GaInP/GaAs HBT operating at  $I_c = 2.45$   $\mu$ A,  $I_b = 250$   $\mu$ A and  $V_{ce} = 2$  V. An excellent agreement over the entire 4–20 GHz frequency range was observed. The noise parameters and the associated gain variations versus frequency are also reported in Figs. 5(a)–(c) for the same bias and a good agreement was observed between the computed and the measured values. Minimum noise figure  $F_{min}$  was found to be constant with frequency with a 3 dB value. This differs from what had previously been reported [20]–[22] where  $F_{min}$  increased with the square of frequency above the 3 dB cut-off frequency of the intrinsic current gain. Numerical simulations have shown the noise figure to be strongly dependent on the extrinsic base-collector capacitance  $C_{pbc}$  and time delay  $\tau$  which reduce the noise figure variations at high frequencies.

The 11.3 dB associated power gain measured at 12 GHz compares well with those observed in FET's. The variation of the equivalent noise resistance  $R_n$  versus frequency is reported in Fig. 5(b). Likewise, the decrease of  $R_n$  with frequency is due to the time delay  $\tau$  and the influence of the extrinsic capacitance  $C_{pbc}$  in this frequency range.

With respect to the optimum reflection coefficient  $\Gamma_{opt}$  depicted in Fig. 5(c), the following may be stated: the low-

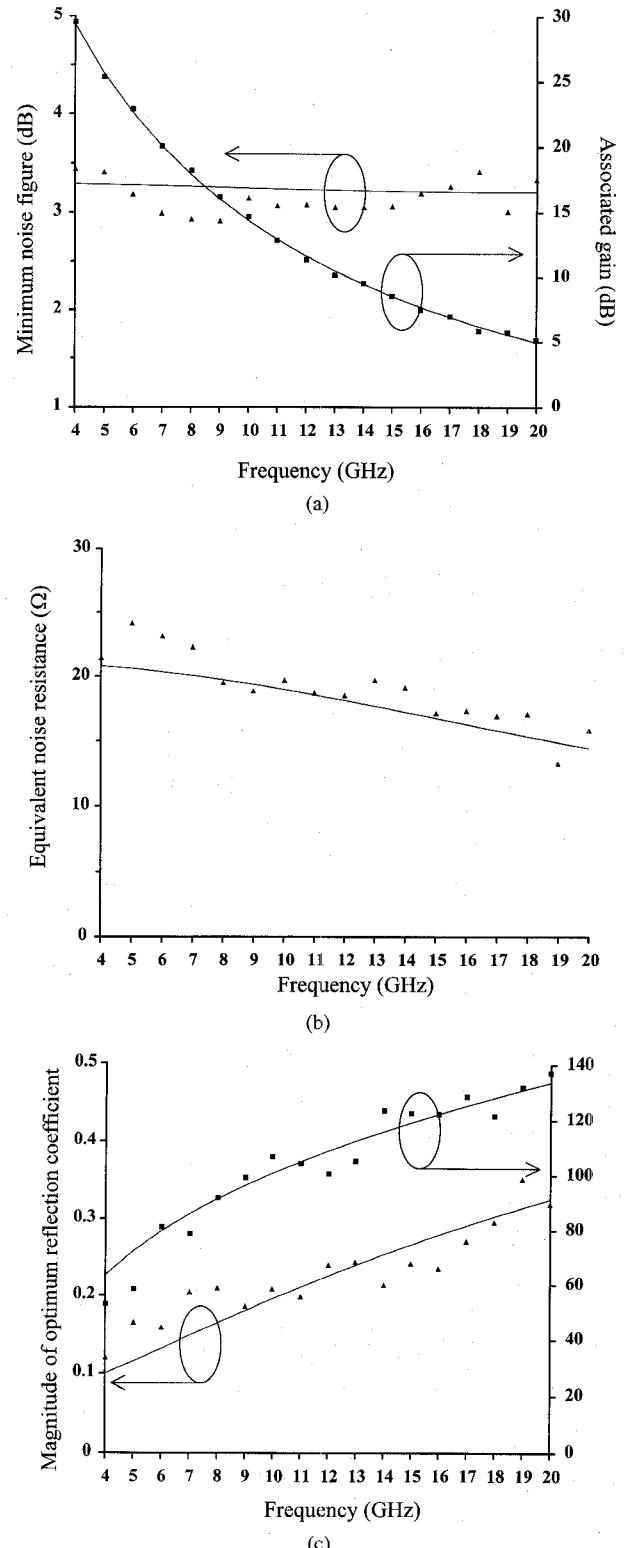



Fig. 5. Noise parameters versus frequency of a GaInP/GaAs HBT at  $I_c = 2.45$  mA,  $I_b = 250$   $\mu$ A and  $V_{ce} = 2$  V. (a) Minimum noise figure  $F_{min}$  and associated gain  $G_a$  versus frequency. “▲”  $F_{min}$  measured. “■”:  $G_a$  measured. “—”: computed data. (b) Equivalent noise resistance  $R_n$  versus frequency. “▲”: measured data. “—”: computed data. (c) Magnitude and phase of the optimum reflection coefficient  $\Gamma_{opt}$  versus frequency. “▲”:  $|\Gamma_{opt}|$  measured. “■”:  $\angle \Gamma_{opt}$  measured. “—”: computed data.

value of  $|\Gamma_{opt}|$  (less than 0.3), compared to the field effect transistors, facilitates the noise parameter measurement procedure and increases the accuracy of the noise parameter

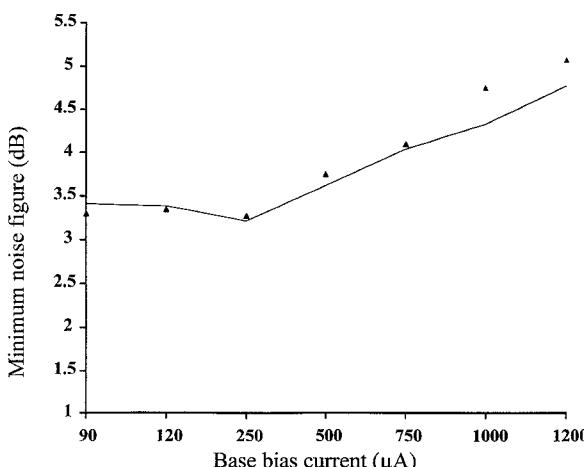



Fig. 6. Measured and computed minimum noise figure  $F_{min}$  versus base current  $I_b$  at  $f = 18$  GHz. "△": measured data. "—": computed data.

extraction technique [15]. Moreover, the low noise matching condition is more easily obtained. The variations of measured and calculated  $F_{min}$  versus base current  $I_b$  are reported in Fig. 6 at  $V_{ce} = 2$  V and  $f = 18$  GHz. The minimum noise figure decreases when decreasing the base current according to the shot noise theory and a minimum occurs at  $I_b = 250$   $\mu$ A. The slight increase of  $F_{min}$  for base currents lower than 250  $\mu$ A is related to the decrease of the current gain at low injection level due to surface recombinations.

The results indicate that shot noise dominates the noise behavior of the HBT's used in this study. Higher values of current gain  $\beta$  are then needed to decrease the minimum noise figure. The agreement between the calculated and the measured values of  $F_{min}$  for base current values lower than 750  $\mu$ A ( $I_c > 10$  mA) is excellent while a slight discrepancy occurs at high values. This occurs probably, because of the device self heating. Further investigations are being carried out to include the junctions temperature of the device in the small-signal and noise model.

In order to evaluate the weight of the noise parameters in the error function, Table I lists the results of two different extraction methods for  $I_c = 2.45$  mA,  $I_b = 250$   $\mu$ A and  $V_{ce} = 2$  V. In the first case, only  $Y$ -parameters are optimized while in the second, both  $Y$ -parameters and noise parameters are considered. Both methods provide an equivalent good fit of scattering parameters. Nevertheless the noise parameters calculated for Case 1 widely differ from the experimental ones, while an excellent agreement is obtained in Case 2 as shown in Figs. 5(a)–5(c). Additionally in Case 2 after many trials, it was found that, in our case, the final values of ECP's are insensitive to the starting point values with the suggested new error function including noise data.

Other GaInP/GaAs HBT's exhibiting different emitter dimensions as well as Si/SiGe HBT's fabricated at Daimler-Benz [23] have also been modeled with similar good results. Although the frequency dependence of noise parameters in Si/SiGe HBT's is slightly different from the one observed in the GaInP/GaAs devices previously investigated, the accuracy of the proposed technique turns out to be very satisfactory.

TABLE I  
ECP VALUES EXTRACTED FROM A CONVENTIONAL PROCEDURE  
(USING S-PARAMETERS ONLY) AND FROM THE PROPOSED  
TECHNIQUE (USING S-PARAMETERS AND NOISE PARAMETERS)  
AT  $I_c = 2.45$  mA,  $I_b = 250$   $\mu$ A AND  $V_{ce} = 2$  V

| ECP's                 | Optimization through<br>$Y$ -parameters only | Optimization through<br>$Y$ -parameters and<br>noise parameters |
|-----------------------|----------------------------------------------|-----------------------------------------------------------------|
| $L_c$ (pH)            | <b>36.8</b>                                  | <b>25.5</b>                                                     |
| $L_b$ (pH)            | <b>36.1</b>                                  | <b>32.1</b>                                                     |
| $L_e$ (pH)            | <b>23.3</b>                                  | <b>21.7</b>                                                     |
| $C_{pbc}$ (fF)        | <b>73.2</b>                                  | <b>45.0</b>                                                     |
| $C_{pce}$ (fF)        | <b>43.8</b>                                  | <b>33.2</b>                                                     |
| $R_c$ ( $\Omega$ )    | <b>3</b>                                     | <b>3</b>                                                        |
| $R_{b1}$ ( $\Omega$ ) | <b>0.3</b>                                   | <b>0.1</b>                                                      |
| $R_{b2}$ ( $\Omega$ ) | <b>10.8</b>                                  | <b>8.6</b>                                                      |
| $R_{ee}$ ( $\Omega$ ) | <b>2.9</b>                                   | <b>2.9</b>                                                      |
| $C_{\Pi}$ (pF)        | <b>0.391</b>                                 | <b>0.407</b>                                                    |
| $C_{be}$ (fF)         | <b>37.1</b>                                  | <b>69.9</b>                                                     |
| $g_{\Pi}$ (mS)        | <b>7.47</b>                                  | <b>9.88</b>                                                     |
| $g_{m0}$ (mS)         | <b>82.9</b>                                  | <b>88.5</b>                                                     |
| $\tau$ (ps)           | <b>0.61</b>                                  | <b>1.79</b>                                                     |

## V. CONCLUSION

We have used a sensitive extraction technique involving both scattering and noise measured data to derive an accurate small-signal and noise equivalent circuit of HBT's. This technique provides correct parameter values and does not require additional test structures or special bias measurement.

We have found that two correlated intrinsic noise current generators provide a satisfactory description of the observed HBT's noise behavior as expected from the conventional high frequency BJT noise model.

Furthermore, the proposed technique can easily be implemented on commercially available CAD software and the appropriate parasitic elements can be added to the proposed equivalent circuit to enhance the frequency range validity.

GaInP/GaAs HBT's have been investigated using this technique under several bias conditions. A noise figure of about 3 dB with a 5 dB associated gain has been obtained at 20 GHz. Further technological improvements that could provide higher values of  $\beta$  will thus provide a further decrease in minimum noise figure.

## ACKNOWLEDGMENT

The authors would like to thank M. A. Di Forte-Poisson, E. Chartier and P. Collot from Thomson CSF/LCR for providing GaInP/GaAs HBT's, Dr. A. Gruhle from the Daimler-Benz Research Center for the supply of the Si/SiGe HBT's and Dr. T. Parra from LAAS/CNRS for fruitful discussions.

## REFERENCES

- [1] R. L. Vaitkus, "Uncertainty in the values of GaAs MESFET equivalent circuit elements extracted from measured two-port scattering parameters," in *Proc. IEEE/Cornell Conf. High-Speed Semiconductor Devices and Circuits*, 1983, pp. 301-308.
- [2] D. Costa, W. U. Liu, and J. S. Harris, "Direct extraction of the AlGaAs/GaAs heterojunction bipolar transistor small-signal equivalent circuit," *IEEE Trans. Electron Devices*, vol. 38, no. 9, Sept. 1991.
- [3] S. Lee and A. Gopinath, "Parameter extraction technique for HBT equivalent circuit using cutoff mode measurement," *IEEE Trans. Microwave Theory Tech.*, vol. MTT 40, no. 3, pp. 574-577, Mar. 1992.
- [4] L. Macho Cacho, A. Werthof, and G. Kompa, "Broadband 40 GHz Si/SiGe equivalent circuit using a successive analytical model parameter extraction," in *Proc. Euro. Microwave Conf., Madrid*, Sept. 1993, pp. 515-517.
- [5] D. R. Pehlke and D. Pavlidis, "Evaluation of the factors determining HBT high-frequency performance by direct analysis of *S*-parameter data," *IEEE Trans. Microwave Theory Tech.*, vol. MTT 40, no. 12, pp. 2367-2373, Dec. 1992.
- [6] Z. R. Hu, Z. M. Yang, V. F. Fusco, and J. A. C. Stewart, "Unified small-signal-noise model for active microwave devices," *IEE Proc.-G*, vol. 140, no. 1, pp. 55-60, Feb. 1993.
- [7] H. Rothe and W. Dahlke, "Theory of noisy fourpoles," *Proc. Inst. Radio Eng.*, 44, pp. 811-818, 1956.
- [8] A. Van Der Ziel and A. G. Becking, "Theory of junction diode and junction transistor noise," *Proc. of IRE*, vol. 46, pp. 589-594, Mar. 1958.
- [9] R. Plana, J. P. Roux, L. Escotte, O. Llopis, J. Graffeuil, S. L. Delage, and H. Blanck, "Excess noise in microwave GaInP/GaAs heterojunction bipolar transistors," in *IEEE GaAs '94, European Gallium Arsenide and Related III-V Compounds, App. Symp.*, Apr. 1994.
- [10] J. Caminade, "Analyse du bruit de fond des transistors bipolaires par un modèle distribué," Thèse d'Etat, no. 772, Université Paul Sabatier de Toulouse, July 1977.
- [11] K. M. Van Vliet, "General transport theory of noise in PN junction-like devices—I. Three-dimensional Green's function formulation," *Solid State Electron.*, vol. 15, pp. 1033-1053, 1972.
- [12] A. P. Laser and D. Pulfrey, "Reconciliation of methods for estimating fmax for microwave heterojunction transistors," *IEEE Trans. Electron Devices*, vol. 38, no. 8, pp. 1685-1692, Aug. 1991.
- [13] M. B. Das, "High-frequency performance limitations of millimeter-wave heterojunction bipolar transistors," *IEEE Trans. Electron Devices*, vol. 35, pp. 604-614, May 1988.
- [14] R. Q. Lane, "The determination of noise parameters," *Proc. IEEE*, pp. 1461-1462, Aug. 1969.
- [15] L. Escotte, R. Plana, and J. Graffeuil, "Evaluation of noise parameter extraction methods," *IEEE Trans. Microwave Theory Tech.*, vol. 41, no. 3, pp. 382-387, Mar. 1993.
- [16] J. M. Dienot, R. Plana, M. Gayral, and J. Graffeuil, "Pulsed I-V characterization and noise measurements for an accurate HBT large-signal model," *Microwave and Optical Technol. Lett.*, vol. 7, no. 2, pp. 78-81, Feb. 1994.
- [17] S. A. Maas and D. Tait, "Parameter extraction method for heterojunction bipolar transistors," *IEEE Microwave and Guided Wave Lett.*, vol. 2, no. 12, pp. 502-504, Dec. 1992.
- [18] S. L. Delage, M. A. Di Forte-Poisson, H. Blanck, E. Chartier, and P. Collot, "First microwave characterisation of LP-MOCVD grown GaInP/GaAs self aligned HBT," *Electron. Lett.*, vol. 27, no. 3, Jan. 1991.
- [19] H. Blanck, S. L. Delage, S. Cassette, E. Chartier, D. Floriot, M. A. Di Forte-Poisson, C. Brylinski, D. Pons, P. Roux, P. Bourne, and P. Quentin, "Fully monolithic Ku and Ka-band GaInP/GaAs HBT wideband VCO's," *Proc. MTT-s*, May 1994.
- [20] Y. K. Chen, R. N. Nottenburg, M. B. Panish, R. A. Hamm, and D. A. Humphrey, "Microwave noise performance of InP/InGaAs heterostructure bipolar transistors," *IEEE Trans. Electron Devices*, vol. 10, no. 10, pp. 470-472, Oct. 1989.
- [21] H. Schumacher, U. Erben, and A. Gruhle, "Noise characterisation of Si/SiGe heterojunction bipolar transistors at microwave frequency," *Electron. Lett.*, vol. 28, no. 12, June 1992.
- [22] R. J. Hawkins, "Limitations of Nielsen's and related noise equations applied to dependent noise figure," *Solid State Electron.*, vol. 20, pp. 191-196, 1977.
- [23] R. Plana, H. Kibbel, A. Gruhle, L. Escotte, J. P. Roux, and J. Graffeuil, "Low frequency noise and microwave noise parameters in Si/SiGe heterojunction bipolar transistors," in *Proc. Euro. Solid State Device Res. Conf.*, Sept. 1993, pp. 51-54.



on GaAs, InP, and SiGe.

**Jean-Philippe Roux** was born in Toulouse, France, on March 26, 1966. He received the M.S. degree from the University Paul Sabatier, Toulouse, in 1990 and the Engineer degree in electrical engineering from the E.N.S.E.E.I.H.T., Toulouse in 1992. Since 1992, he has been working toward the Ph.D. degree in electronics in the "Laboratoire d'Analyse et d'Architecture des Systèmes" from the French National Scientific Research Council (LAAS-CNRS). His research interests include noise measurement and modelling of Heterojunction Bipolar Transistor

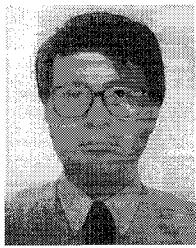


**Laurent Escotte** was born in Nouméa in 1962. He received the Ph.D. degree in optic and microwave communications from the University of Limoges, France, in 1988.

Since 1989, he has been assistant professor at the Paul Sabatier University of Toulouse, France. At the same time, he joined the Laboratoire d'Analyse et d'Architecture des Systèmes du Centre National de la Recherche Scientifique (LAAS-CNRS), Toulouse, where he was engaged in noise measurement and modelling of solid-state microwave components.



**Robert Plana** was born in Toulouse, France, on March 4, 1964. He received the M.S. degree and Ph.D. degree in Electronics Engineering in 1987 and 1993 respectively, both from Paul Sabatier University, Toulouse, France.


Since 1988, he has been with Paul Sabatier University and the Laboratoire d'Analyse et d'Architecture des Systèmes du Centre National de la Recherche Scientifique, Toulouse. His interests are in low-frequency noise properties of MESFET's, HEMT's, PHEMT's, and HBT's.



**Jacques Graffeuil** (A'88-SM'90) was born in Agen, France. He received the Ingénieur INSA degree and the Thèse d'Etat degree in electronic engineering in 1969 and 1977, respectively, both from Paul Sabatier University, Toulouse, France.

Since 1970, he has been assistant professor at Paul Sabatier University. At the same time he joined the Laboratoire d'Analyse et d'Architecture des Systèmes du Centre National de la Recherche Scientifique (LAAS-CNRS), Toulouse, where he engaged in research on noise in semiconductor devices. His first area of research was Gunn effect devices. Since 1972 he has been involved in the study of gallium arsenide Schottky-barrier FET's. He is currently professor of electrical engineering at Paul Sabatier University, Toulouse, France and microwave group leader at LAAS-CNRS. His current activities are in the area of MESFET's, HEMT's, HBT's noise and nonlinear properties, and MMIC design.

Pr. Graffeuil has authored or co-authored over 50 technical papers and three books.



**Sylvain Laurent Delage** (M'93) was born in 1959 in Paris, France. His graduate studies were done at University Paris VII, receiving the Ph.D. degrees in physics and electrical engineering in 1985. His thesis research was performed at the French Telecom Research Center, CNET in Grenoble on cristal growth, processing and characterization of Si/CoSi<sub>2</sub>/Si metallic base transistor. Prior to becoming GaInP/GaAs HBT project leader to develop a technology for microwave HBT at Thomson-CSF Central Research Laboratory (LCR) in 1988, he was a post-doctoral fellow for two years with IBM Thomas J. Watson Research Center working on the first epitaxial growth of SiGe/Si HBT.

He has published more than 50 scientific papers and holds seven patents.



**Hervé Blanck** was born in Colmar, France, on July 29, 1963. He received the M.S. and the Ph.D. degree from the University of Strasbourg, France, in 1986 and 1989 respectively, both in electrical engineering.

From 1986 to 1989 he was a member of the Research Staff at Thomson-CSF in the Gallium-Arsenide Department, where he worked on rapid thermal annealing of ion implanted GaAs and MBE-grown GaAs on Si. In 1989 and 1990 he was a Visiting Scientist in the Center for Material Sciences

at the MIT.

Since 1990 he has been at Thomson-CSF Central Research Laboratory (LCR) in Orsay, France. His research interests include the optimization, fabrication and characterization of GaInP/GaAs heterojunction bipolar transistors for microwave applications.